Integrating Model Management with o

"I.

Management in Decision Support Systems

Ting-Peng LIANG
Department of Decision Sciences, The Wharton School, Univer-
sity of Pennsylvania, Philadelphia, PA 19104, U.S.A.

Because of the increasing complexity of the problems faced
by decision makers and the nature of decision support systems,
decision models are becoming more and more crucial to their
success. In this paper, a general framework for model manage-
ment, which can integrate model management and data mana-
gement and handle issues in model management such as model
creation, model modification and model use is proposed.

Keywords: Decision Models; Model Management; Data
Management; Data—Model Interface; Data—Model
Management Integration

Ting-Peng Liang is completing his dis-
sertation in the Department of Deci-
sion Sciences at the Wharton School
of the University of Pennsylvania, He
holds an M.A. degree in Decision Sci-
ences, an M.B.A_, and a B.S. degree in
Engineering. Before pursuing his doc-
tor’s degree, he had spent two years in
the military and three years in in-
dustry as a senior researcher, including
one year as a research group director.
He is the author of two books in infor-
mation systems (in Chinese) and has

L g8
published papers in the proceedings of national and local
conferences.

North-Holland
Decision Support Systems 1 (1985) 221-232

1. Introduction

Decision support systems (DSSs) are designed
to support semi-structured or unstructured deci-
sions in order to improve the effectiveness of
decision making. In general, a decision support
system includes three highly interrelated compo-
nents (database, model base, and user interface
which include dialogue management and report
generators) and interfaces to integrate these com-
ponents (for example [1,2]). The database provides
the data required for decision making, the model
base provides appropriate models, and the user
interface provides a channel so that the user can
communicate with the system.

Of the interfaces integrating the components,
the data—model interface is certainly one of the
most important because both the input and output
of a model are data and should be, in most cases,
provided by or stored in the database of the
system. Currently, most database management
systems include a programming language so that
the application program can access the data in the
database via interface programs or embedded key
words in the application program (e.g., Data
Manipulation Language of the CODASYL model).
However, this kind of linkage between a model
and a database is on an individual model basis. It
suffers from drawbacks such as redundancy in
programming effort, difficulty in maintenance, and
lack of flexibility.

In addition, the growing use of decision models
has attracted research in model management. The
integration of model management and data
management is certainly one of the major consid-
erations in developing a general model manage-
ment system. There are three primary reasons to
adopt decision models in DSSs:

(i) The rapid development of Management Sci-
ence/Operations Research (MS/OR) since
World War II has made some decision models
very powerful in dealing with complex prob-
lems.

(i) The complexity of the decision problems faced
by the decision maker increases over time.

0167-9236 /85 /$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

222 T.-P. Liang / Model and Data Management in DSS

(iii) A data-oriented DSS has very limited capabil-
ity for transferring data into useful informa-
tion and, in most cases, can only support the
intelligence stage of the decision process, while
decision models can support the design and
the choice stages. For example, the value of a
portfolio selection DSS may significantly de-
crease if it is not armed with a powerful
portfolio analysis model

Although a number of current systems such as
Lotus 1-2-3 and IFPS claim to have the capabili-
ties of model management, most of them still
interface databases with models on an individual
model basis and lack a common interface to in-
tegrate them. The primary reason for this is that
we do not yet have a general framework to guide
the development of model management systems.
Most of the previous researchers in model manage-
ment have tried to develop systems that were
similar to a database management system. For
example, Flam employed the entity-relationship
approach [3-5] Blanning adopted the relational
approach [6-14], and Konsynski and Dolk used
the CODASYL approach [15,16]. Models are cer-
tainly similar to data in some sense, but they also
have many differences [9]. Therefore, using an
approach similar to data management without tak-
ing into account the specific characteristics of
models and model management may have prob-
lems in both the integration and the implementa-
tion of model management and data management.

The purpose of this article is to propose a
general framework for model management which
can handle not only those functions facilitating
model creation, model modification and mainte-
nance, model retrieval. but also the integration of
model management and data management. Al-
though it may not be easy to define standard
requirements for developing a model management
system, the following four points can be consid-
ered as minimum requirements for a model
management system:

1. It should have the capability of supporting vari-
ous users with different requirements. Although
there are many different ways to classify users,
model users can be divided into three different
roles: the information user (the decision maker);
the model builder; and the toolsmith. A good
model management system should support all
three roles.

2. It should have the capability of integrating
model and data in a manner other than the
individual model basis in order to reduce pro-
gramming work and the difficulty of maintain-
ing the model base. In other words, the system
should provide a common interface between the
model base and the data base.

3. It should communicate with the user through
the common user interface component of the
DSS.

4. It should provide an environment to support
model sharing. Since many DSSs are developed
in a distributed environment and for multiple
users, model sharing is one of the most im-

= portant considerations in designing model
management systems.

In the remaining parts of this paper, the evolu-
tion of model management will be described at
first, followed by a general framework for model
management and the process showing how model
management can be integrated with data manage-
ment. Finally, an illustrative example is provided.

2. Evolution of Model Management and Data
Management

From the software design point of view, the
integration of model management and data
management has evolved through three genera-
tions, as shown in Fig. 1. In the first generation,
models and data were integrated on the basis of an
individual application program. The application
programmer was not only responsible for devel-
oping the computational procedures of the pro-
gram but also for designing the data structures
and integrating the two. No databases or ready-to-
run subroutines were available at that time. This
approach was certainly very efficient for the mac-
hine because each program was tailored for the
specific application. However, in addition to being
time-consuming and expensive to develop models,
it was also difficult to maintain them.

Because many application programs may use
some common computational procedures, these
procedures were collected in a package in order to
reduce the redundancy among programs. These
kinds of subroutine packages, such as IBM’s Sci-

T.-P. Liang / Model and Data Management in DSS 223

1. THE_FIRST GENERATION
MODEL MODEL MODEL
+ + +
TOOLS TOOLS TOOLS
+ -+ +
DATA DATA DATA
2. THE SECOND GENERATION
MODEL MODEL MODEL
+ + +
DATA DATA DATA
/
TOOL BASE
3. THE THIRD GENERATION
MODEL MODEL MODEL
BASE BAT
4. THE FOURTH GENERATION
MODEL
BASE
MBMS
TOOL L
BASE DATA
BASE

Fig. 1. The Evolution of Model Management.

entific Subroutine Packages written in FOR-
TRAN, that provided a library of subroutines for

. statistical and matrix operations, featured the sec-

ond generation. Although the computational sub-
routine package may be classified as a model base
(for example, [2]), it is called the ‘tool base’ in
order to distinguish from the ‘model base’ in this
paper.

One of the most significant distinctions between
models and tools is that models are problemdo-

main dependent while computational tools are
problemdomain independent. From Fig. 2, we can
see that a model is an abstraction of a real world
problem, while the computational tool is a func-
tion that can transform inputs of a model to some
useful outputs for solving the problem. Based on
this criterion, the simplex method is a tool, but the
formulation for solving a production mix problem
by using the simplex method is a model.

The advances in database management systems
since the late 60’s led to the development of the
third generation, the current state. The most im-
portant feature of this generation is the wide use
of the database management system to manage a
comprehensive database. Application programs
can retrieve date or store results in the database by
using the Data Manipulation Language (DML) or
other database management languages. In this
generation, models and data are integrated by way
of the database management language. If the num-
ber of decision models employed is not large, this
approach is certainly an efficient way. However, if
we have a number of decision models to be
managed, then the performance of this approach
will not be satisfactory. The problems that oc-
curred in data management two decades ago (such
as inconsistency and redundancy) will definitely
happen in the third generation model management
systems. Therefore, a generalized model base
management system is required.

REAL WORLD
PROBLEM

Computational 5
Procedures

Apglication
&

Evaluation

INPUTS >

OUTPUTS

Fig. 2. The Model Development Cycle.

224 T.-P. Liang / Model and Data Management in DSS

The feature of the fourth generation is that the
integration of models with data is no longer on the
individual model basis. Rather, a model manage-
ment system will take over and be responsible for
all communication between the model base and
the database.

Advantages of the fourth generation integration
between models and data, which are similar to the
advantages of the development of database
management systems, include the following:

(1) Redundancy can be reduced:

The model builder does not need to worry
about the integration between the model and the
data since the system will handle this issue auto-
matically. This will certainly reduce the program-
ming work and make the model building easier.

(2) Models can be shared:

Many DSSs are developed in a distributed en-
vironment or for multiple users. Model sharing is
certainly an important consideration. With a good
model base management system, all authorized
users can access the model with minimum ad-
ditional effort once the model has been built.

(3) Flexibility can be increased:

The model management system provides more
flexibility to the DSS and serves as a buffer be-
tween the model base and the database so that the
impact of any changes in the database on models
can be reduced. For example, if a new database
management system is adopted, all changes can be
absorbed by the model base management system.
The model management system would have to be
modified in order to adapt to the new DBMS, but
all models in the model base still work without the
need to change anything. Otherwise, we would
have to modify all models.

In summary, with the first and second genera-
tions, integration between models and data is basi-
cally within the individual application program.
The difference between them is that the latter has
a common tool base that the application program
can use by invoking commands such as CALL and
RETURN. The major difference between the sec-
ond and third generation is that in the third gener-
ation the integration is accomplished by linking
models with the database management language
rather than with the data directly. Fourth genera-

tion integration is accomplished through the lin-
kage between the model base management system
and the database management system. Neither
direct relations between models and data nor be-
tween the model and database management sys-
tems exist.

3. Previous Research in Model Management

Models can be viewed as data, statements, or
subroutines [2]. Regarding fourth generation model
management, previous research includes two of
these three concepts: treating a model as a sub-
routine and treating a model as a datum. However,
due to the thorough investigation of database
management in the past two decades and the
importance of the compatibility between the model
base and database in DSS, most researchers view
models as data. They focus on building a model
management system similar to database manage-
ment systems either according to the CODASYL
network or relational approach [1,4,9-12,14,
16-18]. Others tried to facilitate the modeling
process by using Al techniques, such as SI-NETs
[5] or natural language processing.

Early work in MMS were focused on introduc-
ing the concept of model management and de-
scribing the functions that a model management
system should have. Will introduced the term
‘model bank’ and argued that the five functions a
model management system should have are: model
description; manipulation; scheduling; execution;
and information display [19]. Sprague and Watson
discussed the same issue from a different point of
view and proposed that four model management
functions are essential: model generation; restruc-
ture; update; and report generation [20]. Both of
these papers are pioneering works in this area and
have touched the core of model management.
However, neither delineated the idea to a general
framework nor did they provide enough guidelines
for designing a system.

Elam et al. came up with the idea of developing
a knowledge-based model management system
[3,4,5]. They began with an entity—relationship
approach and ended up with a model including
five components: analyzer; builder; interrogator;
processor; and knowledge base [3-5]. Basically,
they treat a model as a subroutine and tries to
build some capabilities of automatic modeling into

T.-P. Liang / Model and Data Management in DSS 225

the knowledge base with the SI-NET (a graphical
language composed of nodes and links for de-
scribing concepts and the interrelationships be-
tween these concepts). They mentioned four differ-
ent roles of users explicitly (although the names of
roles were different in two papers), but did not
tailor a framework to fit them.

Konsynski and Blanning, on the other hand,
viewed models as data. Konsynski and Dolk intro-
duced a generalized model management system
which treates models as a data abstraction con-
sisting of elements, equations, and solution proce-
dures [15,16]. While this approach basically corre-
sponds to the CODASYL network, it does not
consider different users’ roles and provides no
external schema which reflects the direct mapping
relationships between input and output to infor-
mation users. Blanning’s model was a relational
one that treated a model as a properly restricted
subset of the Cartesian cross product of its inputs
and its outputs. He suggested that a model bank
may be viewed as a set of virtual relations with
input and output attributes and functional de-
pendencies between them, just as a set of relations
with key and content attributes [9-14,17]. This
approach appropriately reflects the information
user’s point of view to the model and certainly can
borrow some of the theoretical background from
relational database management systems. How-
ever, multiple mappings and the link among mod-
els are two major problems since it does not
explicitly handle the computational procedures,
the kernel of models. For example, an integer
programming model may be solved by the
cutting-stock algorithm, the Lagrangian relaxation
or the Kuhn-Tucker condition, and a problem
may be formulated both as an integer pro-
gramming problem or a linear programming prob-
lem. Therefore, the relationships between inputs
and outputs may not be unique.

In general, previous works have revealed some
interesting issues, but they could be further devel-
oped to reach a general framework. Elam et al.
noticed the requirements of different users and
specified the possible knowledge base but did not
provide a detailed framework for all uses. The
relational approach is good on the external levels
which clearly represents the mapping from input
to outputs but it needs a mechanism to handle the
modeling in a multi-mapping situation. Therefore,
a framework that can fulfil both the requirements

of different users and those technical require-
ments, and that can also fully integrate model
management with data management is needed.
This is described in Section 4.

4. Users’ Roles

Users with different responsibilities and differ-
ent backgrounds may play different roles in using
a model management system. Assessing the user’s
role can identify different requirements of various
roles and make the system more effective. Al-
though several names have been used to classify
users’ roles under different situations, users of
model management systems can be classified into
three categories: information user; model builder;
and toolsmith. Information users are decision
makers or their representatives who need the out-
put information to make decisions. They are inter-
ested in the output and its correctness but may not
understand or have any interest in how the model
works. Model builders are responsible for devel-
oping a model that can provide the required infor-
mation to the decision maker. They deal with what
tools are available for developing the model, how
to develop the model, what input data are re-
quired, and the validity of the model. They may
not care how information users use the output of
the model. The toolsmith is a very technically
oriented person who is responsible for developing
new computational algorithms or coding computa-
tional algorithm into programs that can be in-
tegrated into the model management system as
tools. A toolsmith is concerned with the cor-
rectness and efficiency of an algorithm, the coding
of programs, and the development of new al-
gorithms.

Although there are three different roles, it does
not mean that each user should only play one role.
A user may play more than one role, and a role
may involve more than one user. Which of the
roles an individual assumes depends upon the
complexity of the problem and the model, the
background and motivation of the user, and the
expertise and time available. Let’s take the capital
budgeting problem as an example to describe dif-
ferent roles. The information user may be a CEO
or a planning staff member. What concerns him is
the optimal combination for investment under the
limitation of available funds and the expected

226 T.-P. Liang / Model and Data Management in DSS

profit of that plan. If he really has a good back-
ground in management science, he may want to
build a model by himself. Otherwise, the user can
ask for a model builder to develop a capital
budgeting model. The model builder normally
should have good background in both model
building and the decision problem. If the model
builder finds that integer programming is required
to solve this capital budgeting problem and for-
mulates it, then, the next issue will be how this
integer programming formulation can be solved?
The toolsmith is the one responsible for answering
this question. He has to provide the required tools,
including algorithm development and program
coding. A model builder may develop an al-
gorithm to solve the capital budgeting model and
code it so that he plays two roles, but a more
reasonable way would be to pick up a ready-to-run
computational tool which has been developed by
the toolsmith, say a cutting stock algorithm. The
toolsmith, therefore, includes those people who

Database

Schema base

N

Model - data
Link

Schema-model
Link

\/

Model- tool
Link

develop algorithms and code programs, such as
operations researchers, statisticians, or computer
programmers.

5. A Framework for Model Management Systems

A model is composed of three components:
inputs; outputs; and computational procedures.
The computational procedures can be further di-
vided into computational modules (tools) and the
logical formulation (logical sequence of tools). For
example, a linear programming model includes the
input data (Ci, Bi, Alij), the logical formulation,
and the computational tools (e.g., LINDO pro-
vides the computational tool). Since different users
may play different roles and have different re-
sponsibilities in using a model management sys-
tem, their concerns are different. The design of
model management systems should take into
account these facts and the requirements discussed

User Interface
Elements

User Interface

External Schema
Information

User

Logical |MDL)%
Configuration | MML
Model
builder

=

Computational
Tool

Toolsmith

Fig. 3. Framework for Model Management Systems.

T.-P. Liang / Model and Data Management in DSS 227

before. One way to do this would be to divide the
model management system into three different
levels based on the correspondence of three com-
ponents and three roles. The framework for model
management, therefore, should include three levels:
the external level; the logical level; and the physi-
cal computational level. Each level should be highly
modular so that it is easy to manage, maintain,
update, etc.. Interfaces are required to connect
different levels and connect the whole model
management system with other components in the
DSS. A framework for model management that
reflects these requirements has been proposed by
Liang [21]. Its graphical representation can be
shown as in Fig. 3. From the figure, we can see
that three levels are tailored for three different
users roles, and different levels can communicate
with each other through interfaces, such as the
schema—model link, the model-tool link, etc.. The
model management system, as a whole, can com-
municate with the database through the
model-data link and with the user through the
user interface.

5.1. External Schema

The external schema of a model is the logical
representation of the mapping from input to out-
put which reflects the information user’s point of
view, because what concerns the information user
is the output under the limitations of available
inputs. A relational schema is the most ap-
propriate approach to represent the external
schema of models. Because there are a number of
models in a model base, a schema base is required
to manage models from the external point of view.
Two relations can be identified to represent a
model, as follows:

INPUT (model name, input name)
OUTPUT (model name, output name)

For example, suppose a model for computing
sales called SALE is SALES = PRICE * QUAN-

TITY. Then the external schema can be repre-
sented as:

INPUT OUTPUT
model name input name model name output name
SALE PRICE SALE SALES
SALE QUANTITY

The advantages of this relational schema are

three-fold:

(1) This schema can be stored in a database, and
therefore not only simplifies the model retri-
eval and storage but also simplifies the compa-
tibility between the model base and the data-
base.

(2) It is highly modular and independent of the
logical computational sequence of the model.
Changes in either the logical computational
level or physical computational tools will have
limited effect on this level.

(3) The user can get the required output informa-
tion without even knowing the name of the
model. The user can specify the output re-
quired and the input available through the
user interface; then the system retrieves the
model by the input and output names, ex-
ecutes the model, and tells the output value to
the user. All current systems require the user
to remember the name of the model to be
executed. Therefore, if a user wants to use a
model which was developed six months ago,
the first thing he must do is to find the name
of the model. If he cannot find the name, he
loses the model. The external schema requires
the user to know only what information he
wants, which is more reasonable.

To link the external schema with the logical con-
figuration there is a help module in to which the
model builder enters the characteristics and ex-
planatory notes on each model in plain language,
and this information is made available to the
information user whenever an automatic selection
is made. This ensures that the user is kept in-
formed not only of his input and output, but also
of the basic function of the model.

Moreover, the user is provided with descrip-
tions of certain categories of models, so that he
can even select the suitable model manually.

5.2. Logical Configuration

The second level of the framework is a local
configuration that reflects the logical relationships
among the computational tools used in the model.
The logical configuration should be evoked by the
external schema and organizes all elements of the
model in an appropriate way.

228 T.-P. Liang / Model and Data Management in DSS

In the external level, models are viewed as data
relations and treated as data. However, in the
logical level and the physical computational level,
a model is viewed as a subroutine and treated as a
program written in a very high-level language.

Two languages are required in order to handle a
model in this level: MODEL DEFINITION LAN-
GUAGE (MDL) and MODEL MANIPULA-
TION LANGUAGE (MML). MDL defines every
component in the model, including model name,
input required, output data, tools used, and other
models linked. MML deals with the manipulation
of models such as create, store, modify, add, delete,
link, use, etc.. A model configuration on the logi-
cal level can be organized as in Fig. 4.

For those simple models, such as the model
‘SALE’ described above, the configuration may
not be so complex. Simple models may not need to
use any tool, nor do they need to link any other
models. For example, the logical configuration of
the model ‘SALE’ can be represented as follows:

NAME: SALE
OUTPUT: SALES
INPUT: PRICE, QUANTITY
BEGIN

SALES = PRICE*QUANTITY
END

This configuration is not very different from
higher-level languages in formulating simple mod-
els, but it does provide the capability of formulat-
ing complex models and managing them.

From the configuration in Fig. 4, it is clear that
any changes of the logical computational sequence
or any changes in the tool used or model linked
will not affect the external schema accessed by the
external information user. On the other hand, the
development and addition of new tools to the
model management system will not affect the
model built unless the name of the tool is changed.

NAME: < model name >

OUTPUT: < output,... >
INPUT: < input,... >
TOOL: < optional,... >
MODEL: < optional,... >
BEGIN

USE € tool >
IF < condition > THEN
LINK < model >
ELSE USE < tool2 >
END

Fig. 4. Organization of the Logical Configuration.

5.3. Physical Computations

The lowest level in the framework is the physi-
cal computational level where a computational
tool bank is maintained. Each tool is viewed and
treated as a subroutine, and the model builder can
use them by a single command, USE. For exam-
ple, the program that executes the cutting stock
algorithm for solving integer programming prob-
lems is a tool, as is the computational part of
LINDO, but it should not include the problem
formulation — the formulation belongs to the logi-
cal formulation.

Each tool in the tool base, which is similar to
the building block addressed by Sprague and Carl-
son [2], is an independent module. Tools can not
communicate with each other. Rather they connect
to an interface which links the logical level and the
physical tool level of the framework.

5.2. Interfaces

Interfaces between different levels are very im-
portant. Sprague and Carlson identify two inter-
faces which are important for DSSs - the
model-data link and the model-dialog link [2]
(p. 273). Bonczek, Holsapple, and Whinston also
specified three interfaces in DSSs: the user—model
interface; the model-data interface; and the
user—data interface [1,20]. As mentioned previ-
ously, there are also two important interfaces
within the model management systems:

— One is the interface between the external schema
and the logical configuration (the schema—model
interface);

— The other is the interface between the logical
configuration and the computational tool (the
model-tool interface).

The functions of the schema—model interface
include:

(1) Creating the external schema of the model
based on its logical configuration and storing
the external schema the schema base;

(2) Executing the logical configuration of the
model once the external schema of that model
is retrieved from the schema base and ex-
ecuted;

T.-P. Liang / Model and Data Management in DSS 229

(3) Transferring data and commands between the
two levels;

(4) Serving as a buffer between these two levels to
provide independence.

The functions of the model-tool interface in-
clude:

(1) Executing tools when they are called by a
model,;

(2) Transferring data and commands between
these two levels;

(3) Serving as a buffer between these two levels to
provide independence.

5.5. Summary

The framework proposed in this paper includes
three levels corresponding to three users’ roles.
The external level provides a relational external
schema to information users who are either deci-
sion makers or their representatives. The logical
configuration reflects the structure of a model. The
model builder, who may be a management scien-
tist with good understanding of the decision prob-
lem or a decision maker with good background in
modeling, is the one most concerned with the
logical level. The toolsmith, who may be an oper-
ations researcher who develops new algorithm or a
computer programmer who codes problems, deals
mainly with the tool level.

In addition to the three levels, four interfaces
are required to connect different components in a
DSS. They are the model base—database link, the
model base—user interface link, the schema—model
link, and the model-tool link.

Two modeling languages are required in this
model management system: model definition lan-
guage and model manipulation language. The
model definition language allows the specification
of models, and the model manipulation language
provides an environment for utilizing models. The
model builder can use these languages to develop
and use models. However, when the decision maker

needs information for decision making, they can

get it in a way similar to retrieving information
from the database, as long as the model has been
built. Neither the model name nor the knowledge

of how the model works is necessary to get the
output.

The advantages of this framework include:

(1) Providing a good environment for model
management to all kinds of users, including
the information user, the model builder and
the toolsmith.

(2) Integrating data management with model
management. The information user can re-
trieve the required information from both the
database and the model base by the same
command. For example, if the query is ‘OUT-
PUT: SALES OF 1986¢’, the DSS can go
through the data dictionary to find whether
the sales for 1986 is available. If it is available,
the system directly reports the information to
the user. If it is not yet available, the system
can check whether it can be projected from
some models. Fortunately, the model ‘SALE’
is found. Then, the system goes back to check
whether the required inputs are available. If
so, the system can retrieve the inputs and
execute the model to provide the information.
If the input data are also not available, the
system can ask the user to provide this infor-
mation.

(3) Having the power and user friendliness of the
relational approach in the external level as well
as the flexibilities in modeling and mainte-
nance in the logical and the computational
tool levels.

(4) The ability to supply the information user with
a short description of a model via a help
module.

In the following section, a capital budgeting
problem will be presented as an illustrative exam-
ple to show how this model management system
works.

6. An lllustrative Example

Suppose a DSS, with a model management
system as proposed in this paper, is available for
company X and the CEO is going to use it to
support a capital budgeting decision that allocates
available funds to some projects in order to maxi-
mize the expected return on investment (ROI) of
the money invested. If this decision is made every
year and the model has been developed and stored

230 T.-P. Liang / Model and Data Management in DSS

in the model base, then the CEO can access the
model by specifying the outputs that he wants,
such as:

OUTPUT: project combination, total ROI
or:

OUTPUT: project combination, total ROI
GIVEN: # of proj, ROI/proj, total funds,

inv/proj

Then the system will retrieve the capital budgeting
model for the user so that the user can input the
data and receive the output. If some of the input
data are available from the data base, then the
system, of course, should retrieve those data auto-
matically.

If the model has not been built, the CEO should
have the model builder (or himself) develop the
model. The model builder recognizes that this a
knapsack problem and can be solved by integer
programming. If the tool for solving integer pro-
gramming has been built into the tool base, the
model builder can develop the model by using the
model definition language and model manipula-
tion language. First, he accesses the logical config-
uration module. Then, a model as described in Fig.
5 is built. After finishing the logical configuration
of the model and storing it, all modeling work is
done and the CEO can then use it. If the tool for
solving integer programming problems is not yet
available, then the model builder has to provide a
ready-to-run tool or have a toolsmith (maybe him-
self) develop a tool and append it to the system
toolbase.

If the model builder thinks that the efficiency of
the integer programming algorithm is unaccepta-
ble when the number of projects is greater than 30
and that a linear programming approximation will
be better, then the statement ‘USE IP’ can be

NAME: capital budgeting
OUTPUT: project combination, total ROI
INPUT: # of proj, ROI/proj, total funds, inv/proj
TOOL: IP
BEGIN
1 = # of proj
C(i) = ROI/proj
B = total funds
A(i) = inv/proj
X(i) = proj 1
MAX SUM (1, C(i) * X(i))
SUBJ TO SUM (i, A(L) * X(i)) <= B
USE 1IP
END

Fig. 5. Logical Configuration of the Capital Budgeting Prob-
lem.

replaced by the statement:

IF i <30 THEN USE IP
ELSE USE LP

In this example, it is clear that the model in-
cludes three levels. The external schema will auto-
matically be generated and stored into the schema
base by the schema-model link after the logical
configuration of the model has been stored in the
system. Therefore, the information user does not
need to know how the model is built unless he is
really interested in the model formulation. Some-
day, if a more efficient algorithm for solving in-
teger programming is developed, the model builder
will not need to modify any logical configuration
to take advantage of the new tool.

7. Integrating Model Management With Data
Management

By implementing the framework described in
the previous section, the model base can be com-
pletely integrated with the database in a DSS.
Although this kind of integration is suggested for
implementation at the level of Decision Support
System Generators (DSSG), it is also good for
complex Specific DSSs.

A simulation of the process of using the in-
tegrated system is shown in Fig. 6 and can be
briefly described as follows:

(1) The user needs some information for decision
making, so he asks the system to provide the
information. Suppose the user wants to develop
the production plan for 1985. He turns on the
system and types: OUTPUT: PRODUCTION
PLAN OF 1985

(2) The query processor of the system receives
the request and analyzes the query to determine
the type of the query: query by input and output;
query by the model name; or query by output
only. In this case, only the output is specified, so
the system will check the database first.

(3) The system checks the database to see whether
the output is available in the database. If the
production plan of 1985 has been scheduled and
stored in the database, then the system will retri-
eve the data and report them to the user. The

T.-P. Liang / Model and Data Management in DSS 231

selection program may be as follows:

SELECT production plan

FROM database
WHERE year = “1985”

(4) If the data is not available in the database,
the system checks the model base to see which
model can provide the required output. If no
model is available, the system will report the un-
availability and provide the modeling phase to the
user. If only one model is available, the system can
check whether the inputs required for that model
are available or not. If all inputs are available, the
system will execute the model and report outputs

to the user. Otherwise, the system will report the
unavailability of some input data and request them
from the user.

(5) If more than one model is available to pro-
vide the same output, the system will check the
inputs required for each model in order to screen
some models out. If more than one model remains
after the primary screen, the system will provide a
menu to the user so that he can choose one. If the
information user is given a number of models to
decide upon, or if a model is executed, the user is
at liberty to request a description of the models via
the help module.

Query | _ . @j%
Processor Queries
User
y
by Inputs by Model by Outputs
sOutputs | [| name Only
Search
Data Dict. [
Available? Re;:gve Reports c:,i
N User
| Search
model Dict.
ol
>1 no. of \= Report .
navail - Modelin
models ahility e
=1 User
N _~Input inputsN_N_| Search
Avail. Ilrn!ide Data Dict.
v Y
Request
Menu ; N
%ﬁ Selection Avallghle for_Inputs i
uSer l | Y User
Retrieve Execute [| Retrieve
Inputs model Inputs
Report
Outputs @E

Fig. 6. Implementation of the Integrated System.

User

232 T.-P. Liang / Model and Data Management in DSS

2. Conclusions

1. 2use of the growing use of decision models
in decision support systems, the management of
models is becoming more and more important. A
good model management system should have not
only those general model management functions
such as model creation, model modification and
maintenance, and model retrieval, but also capa-
bilities to integrate various components of the
system. In this paper, the evolution of the integra-
tion between model management and data mana-
gement is first described. Then, a three-level
framework for model management, which not only
has the required capabilities but also takes various
requirements of different users’ roles into account,
is proposed. Finally, the possible process of using
a system developed with the framework addressed
in this paper is described.

Acknowledgement

The author would like to thank Dr. James C.
Emery, Dr. Gerald Hurst, Dr. Ari Vepsalainen,
Ms. Leslie Aucoin-Drew and an anonymous referee
for their valuable comments on an earlier version
of the paper.

References

[1] Bonczek, R.H., C.W. Holsapple, and A.B. Whinston, The
Evolving Roles of Models in Decision Support Systems,
Decision Sciences 11 (1980) 337-356.

[2] Sprague, RH., Jr. and E.D. Carlson, Building Effective
Decision Support Systems (Prentice-Hall, Englewood Cliffs
NJ, 1982). ;

[3] Elam, J.J., Model Management Systems: An QOverview,
Working paper 79-12-04, Decision Sciences, The Wharton
School, University of Pennsylvania, PA, p17 (1979).

[4] Elam, J.J., Model Management Systems: A Framework for
Development, Proc. 1980 SE AIDS (1980) 35-38.

[5] Elam, J.J., J.C. Henderson and L.W. Miller, Model
Management Systems: An Approach to Decision Support
in Complex Organizations, Proc. First Int. Conf. Informa-
tion Systems (1980) 98-110.

(6] Blanning, R.R., The Functions of Decision Support Sys-
tem, Information and Management 2 (1979) 87-93.

[7] Blanning, R.W., Model Structure and User Interface in
Decision Support Systems, DSS-81 Transactions (1981)
1-7.

[8] Blanning, R.W., Model-based and Data-based Planning
Systems, OMEGA (1981) 163-168.

[9] Blanning, RW., A Relational Framework for Model
Management in Decision Support Systems, DSS-82
Transactions (1982) 16-28.

[10] Blanning, R.W., Data Management and Model Manage-
ment: A Relational System, Proc. ACM 12th SE Regional
Conf. (1982) 139-149.

[11] Blanning, R.W. What is happening in DSS, Interfaces
(1983) 71-80.

[12] Blanning, R.W., Issues in the Design of Relational Model

~ Management Systems, IFIPS Conf. Proc. (1983) 395-401.

[13] Blanning, R.W., Language Design for ‘Relational Model
Management in: S.K Chang (ed.) Management and Office
Information Systems, (Plenum, New York, 1984).

[14] Blanning, RW,, Conversing with Management Informa-
tion Systems in Natural Language, CACM 27 (1984)
201-207.

[15] Dolk, D.R., Model Management in Organization, Paper
presented at ORSA /TIMS Conf. San Francisco (1984).

[16] Konsynski, B. and D. Dolk, Knowledge Abstractions in
Model Management, DSS-82 Transactions (1982) 187-202.

[17] Blanning, RW., 4 Relational Framework for the Organiza-
tion of Model Banks, Working paper, Owen Graduate
School of Management, Vanderbilt University NY.

[18] Minch, R.P., Design of a DSS Facilitating Model Manage-
ment and Utilization, DBA Thesis, Texas Tech. University
TX (1982).

[19] Will, H.J., Model Management Systems, in Grochla, E.
and Szyperski (eds.), Information Systems and Organiza-
tion Structure, pp. 467-482 (Walter the Gruyter, Berlin,
1975).

[20] Sprague, R.H., Jr. and H.J. Watson, “Model Management
in MIS”, Proceedings of the 7th National AIDS Meeting,
1975, pp- 213-215.

[21] Liang, T.P., 4 Multi-level Framework for Model Manage-
ment in DSS, Working Paper, Decision Sciences, The
Wharton School, University of Pennsylvania, PA (1984).

	P1
	P2
	P3
	P4
	P5
	P6
	P7

